Image denoising is the process of removing noise from images to improve their quality.
Robust classification in noisy environments remains a fundamental challenge in machine learning. Standard approaches typically treat signal enhancement and classification as separate, sequential stages: first enhancing the signal and then applying a classifier. This approach fails to leverage the semantic information in the classifier's output during denoising. In this work, we propose a general, domain-agnostic framework that integrates two interacting diffusion models: one operating on the input signal and the other on the classifier's output logits, without requiring any retraining or fine-tuning of the classifier. This coupled formulation enables mutual guidance, where the enhancing signal refines the class estimation and, conversely, the evolving class logits guide the signal reconstruction towards discriminative regions of the manifold. We introduce three strategies to effectively model the joint distribution of the input and the logit. We evaluated our joint enhancement method for image classification and automatic speech recognition. The proposed framework surpasses traditional sequential enhancement baselines, delivering robust and flexible improvements in classification accuracy under diverse noise conditions.
We investigate additive skip fusion in U-Net architectures for image denoising and denoising-centric multi-task learning (MTL). By replacing concatenative skips with gated additive fusion, the proposed Additive U-Net (AddUNet) constrains shortcut capacity while preserving fixed feature dimensionality across depth. This structural regularization induces controlled encoder-decoder information flow and stabilizes joint optimization. Across single-task denoising and joint denoising-classification settings, AddUNet achieves competitive reconstruction performance with improved training stability. In MTL, learned skip weights exhibit systematic task-aware redistribution: shallow skips favor reconstruction, while deeper features support discrimination. Notably, reconstruction remains robust even under limited classification capacity, indicating implicit task decoupling through additive fusion. These findings show that simple constraints on skip connections act as an effective architectural regularizer for stable and scalable multi-task learning without increasing model complexity.
Recent text-to-image (T2I) diffusion models have achieved remarkable advancement, yet faithfully following complex textual descriptions remains challenging due to insufficient interactions between textual and visual features. Prior approaches enhance such interactions via architectural design or handcrafted textual condition weighting, but lack flexibility and overlook the dynamic interactions across different blocks and denoising stages. To provide a more flexible and efficient solution to this problem, we propose Diff-Aid, a lightweight inference-time method that adaptively adjusts per-token text and image interactions across transformer blocks and denoising timesteps. Beyond improving generation quality, Diff-Aid yields interpretable modulation patterns that reveal how different blocks, timesteps, and textual tokens contribute to semantic alignment during denoising. As a plug-and-play module, Diff-Aid can be seamlessly integrated into downstream applications for further improvement, including style LoRAs, controllable generation, and zero-shot editing. Experiments on strong baselines (SD 3.5 and FLUX) demonstrate consistent improvements in prompt adherence, visual quality, and human preference across various metrics. Our code and models will be released.
Implicit neural representations (INRs) have emerged as powerful tools for encoding signals, yet dominant MLP-based designs often suffer from slow convergence, overfitting to noise, and poor extrapolation. We introduce FUTON (Fourier Tensor Network), which models signals as generalized Fourier series whose coefficients are parameterized by a low-rank tensor decomposition. FUTON implicitly expresses signals as weighted combinations of orthonormal, separable basis functions, combining complementary inductive biases: Fourier bases capture smoothness and periodicity, while the low-rank parameterization enforces low-dimensional spectral structure. We provide theoretical guarantees through a universal approximation theorem and derive an inference algorithm with complexity linear in the spectral resolution and the input dimension. On image and volume representation, FUTON consistently outperforms state-of-the-art MLP-based INRs while training 2--5$\times$ faster. On inverse problems such as image denoising and super-resolution, FUTON generalizes better and converges faster.
Image denoising aims to remove noise while preserving structural details and perceptual realism, yet distortion-driven methods often produce over-smoothed reconstructions, especially under strong noise and distribution shift. This paper proposes a generative compression framework for perception-based denoising, where restoration is achieved by reconstructing from entropy-coded latent representations that enforce low-complexity structure, while generative decoders recover realistic textures via perceptual measures such as learned perceptual image patch similarity (LPIPS) loss and Wasserstein distance. Two complementary instantiations are introduced: (i) a conditional Wasserstein GAN (WGAN)-based compression denoiser that explicitly controls the rate-distortion-perception (RDP) trade-off, and (ii) a conditional diffusion-based reconstruction strategy that performs iterative denoising guided by compressed latents. We further establish non-asymptotic guarantees for the compression-based maximum-likelihood denoiser under additive Gaussian noise, including bounds on reconstruction error and decoding error probability. Experiments on synthetic and real-noise benchmarks demonstrate consistent perceptual improvements while maintaining competitive distortion performance.
Ultrasound denoising is essential for mitigating speckle-induced degradations, thereby enhancing image quality and improving diagnostic reliability. Nevertheless, because speckle patterns inherently encode both texture and fine anatomical details, effectively suppressing noise while preserving structural fidelity remains a significant challenge. In this study, we propose a prior-guided hierarchical instance-pixel contrastive learning model for ultrasound denoising, designed to promote noise-invariant and structure-aware feature representations by maximizing the separability between noisy and clean samples at both pixel and instance levels. Specifically, a statistics-guided pixel-level contrastive learning strategy is introduced to enhance distributional discrepancies between noisy and clean pixels, thereby improving local structural consistency. Concurrently, a memory bank is employed to facilitate instance-level contrastive learning in the feature space, encouraging representations that more faithfully approximate the underlying data distribution. Furthermore, a hybrid Transformer-CNN architecture is adopted, coupling a Transformer-based encoder for global context modeling with a CNN-based decoder optimized for fine-grained anatomical structure restoration, thus enabling complementary exploitation of long-range dependencies and local texture details. Extensive evaluations on two publicly available ultrasound datasets demonstrate that the proposed model consistently outperforms existing methods, confirming its effectiveness and superiority.
Diffusion models have emerged as the leading approach for text-to-image generation. However, their iterative sampling process, which gradually morphs random noise into coherent images, introduces significant latency that limits their applicability. While recent few-step diffusion models reduce the number of sampling steps to as few as one to four steps, they often compromise image quality and prompt alignment, especially in one-step generation. Additionally, these models require computationally expensive training procedures. To address these limitations, we propose ImageRAGTurbo, a novel approach to efficiently finetune few-step diffusion models via retrieval augmentation. Given a text prompt, we retrieve relevant text-image pairs from a database and use them to condition the generation process. We argue that such retrieved examples provide rich contextual information to the UNet denoiser that helps reduce the number of denoising steps without compromising image quality. Indeed, our initial investigations show that using the retrieved content to edit the denoiser's latent space ($\mathcal{H}$-space) without additional finetuning already improves prompt fidelity. To further improve the quality of the generated images, we augment the UNet denoiser with a trainable adapter in the $\mathcal{H}$-space, which efficiently blends the retrieved content with the target prompt using a cross-attention mechanism. Experimental results on fast text-to-image generation demonstrate that our approach produces high-fidelity images without compromising latency compared to existing methods.
State-space models (SSM) are common in signal processing, where Kalman smoothing (KS) methods are state-of-the-art. However, traditional KS techniques lack expressivity as they do not incorporate spatial prior information. Recently, [1] proposed an ADMM algorithm that handles the state-space fidelity term with KS while regularizing the object via a sparsity-based prior with proximity operators. Plug-and-Play (PnP) methods are a popular type of iterative algorithms that replace proximal operators encoding prior knowledge with powerful denoisers such as deep neural networks. These methods are widely used in image processing, achieving state-of-the-art results. In this work, we build on the KS-ADMM method, combining it with deep learning to achieve higher expressivity. We propose a PnP algorithm based on KS-ADMM iterations, efficiently handling the SSM through KS, while enabling the use of powerful denoising networks. Simulations on a 2D+t imaging problem show that the proposed PnP-KS-ADMM algorithm improves the computational efficiency over standard PnP-ADMM for large numbers of timesteps.
Pre-trained diffusion models excel at generating high-quality images but remain inherently limited by their native training resolution. Recent training-free approaches have attempted to overcome this constraint by introducing interventions during the denoising process; however, these methods incur substantial computational overhead, often requiring more than five minutes to produce a single 4K image. In this paper, we present PixelRush, the first tuning-free framework for practical high-resolution text-to-image generation. Our method builds upon the established patch-based inference paradigm but eliminates the need for multiple inversion and regeneration cycles. Instead, PixelRush enables efficient patch-based denoising within a low-step regime. To address artifacts introduced by patch blending in few-step generation, we propose a seamless blending strategy. Furthermore, we mitigate over-smoothing effects through a noise injection mechanism. PixelRush delivers exceptional efficiency, generating 4K images in approximately 20 seconds representing a 10$\times$ to 35$\times$ speedup over state-of-the-art methods while maintaining superior visual fidelity. Extensive experiments validate both the performance gains and the quality of outputs achieved by our approach.
Diffusion Transformers (DiTs) achieve state-of-the-art performance in high-fidelity image and video generation but suffer from expensive inference due to their iterative denoising structure. While prior methods accelerate sampling by caching intermediate features, they rely on static reuse schedules or coarse-grained heuristics, which often lead to temporal drift and cache misalignment that significantly degrade generation quality. We introduce \textbf{AdaCorrection}, an adaptive offset cache correction framework that maintains high generation fidelity while enabling efficient cache reuse across Transformer layers during diffusion inference. At each timestep, AdaCorrection estimates cache validity with lightweight spatio-temporal signals and adaptively blends cached and fresh activations. This correction is computed on-the-fly without additional supervision or retraining. Our approach achieves strong generation quality with minimal computational overhead, maintaining near-original FID while providing moderate acceleration. Experiments on image and video diffusion benchmarks show that AdaCorrection consistently improves generation performance.